Quantum radial basis function method for the Poisson equation
نویسندگان
چکیده
Abstract The radial basis function (RBF) method is widely used for the numerical solution of Poisson problem in high dimension, where approximate can be found by solving a large system linear equations. We demonstrate that RBF accelerated on quantum computer using an efficient algorithm compare theoretical performance our with standard classical algorithm, and find achieve polynomial speedup.
منابع مشابه
Stable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملA Galerkin Radial Basis Function Method for the Schrödinger Equation
In this article, we consider the discretization of the time-dependent Schrödinger equation using radial basis functions (RBFs). We formulate the discretized problem over an unbounded domain without imposing explicit boundary conditions. Since we can show that time stability of the discretization is not guaranteed for an RBF-collocation method, we propose to employ a Galerkin ansatz instead. For...
متن کاملCollocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملThe radial basis integral equation method for 2D Helmholtz problems
A meshless method for the solution of 2D Helmholtz equation has been developed by using the Boundary Integral Equation (BIE) combined with Radial Basis Function (RBF) interpolations. BIE is applied by using the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source point always in the ...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A
سال: 2023
ISSN: ['1751-8113', '1751-8121']
DOI: https://doi.org/10.1088/1751-8121/acce83